Levels

• Foundation Level

The focus is on people attending the class and get some basic impressions and understanding (mainly physical) of the roasting process. They are instructed to do some basic calculations on some physical properties and doing them while instructed is sufficient to pass and get certified. The subject material and tests are designed to be relevant for people who will use this first certification process to consider if the vocation as a coffee roaster suits them. Pass mark is 60%

• Intermediate Level

Students are tested in their understanding of and skills in designing and executing different positive roast profiles as well their sensory recognition of different roast defects. Students are introduced to different chemical conditions and principles that cause the physical properties and reactions introduced at foundation level. It is expected that they are able to name these reactions and what they cause in terms of the physical and sensory properties of the final coffee. The pass mark of 70% means that the practical and theoretical tests need to be done satisfactory to pass and become certified.

• Professional Level

Advanced skills in profile development and the sensory evaluation of different profiles are tested at this level. Knowledge of the fundamental chemistry of coffee is tested as well as the chemical reactions occurring during coffee roasting. Roastery management principles including manufacturing efficiency, capital expenditure and decision making are introduced to ensure that successful students achieving the 80% pass mark have strong vocationally relevant skills.

Foundation

Sensory Foundation Level is a pre-requisite for the roasting Foundation course.

	Level 1: Knowledge – Remembering information								
Recognize	Memorize	List	Name	Relate					
Define	Identify	Distinguish	Repeat	Recall					
	Level 2: Comprehension – Explaining concepts								
Restate	Describe	Explain							
Discuss	Identify	Express	Translate	Recognize					
Locate	Report	Extrapolate	Convert	Review					
Interpret	Abstract	Transform							

Curriculum

Торіс	Knowledge Required	Skill Required	Blooms Taxonomy	Reference	Practical Test	Written Test
1.0 Heat transfer	The overall roasting process needs heat to progress and this is transferred from the heating element in the roaster to the beans during the roasting process. Heat always goes from a hot substance to a cold substance.	Explain that heat goes from hot to cold substances. Recognise that heat eventually leads to fires in roasters.	L2			
1.1 Fire	Since coffee is an organic substance inappropriate amounts of heat can lead to fire in the drum but also fire			Wiki: Fire_triangle Wiki: Fire_extinguisher		

ch m A P	n the chaff collector and the chimney because of organic natter build-up. Although there is a principally big difference between the coffee roasting process and a fire, the beans are not far from catching ire in the end of a roast. In case of any irregularity in the end of a roast there is a great risk of fire. Because of his the roast master should always have a specific trategy to handle as part of their production routines. Very different phases are present in the overall process of converting green coffee into well roasted coffee beans cooled to room emperature. Cime and temperature evolution are main parameters for quality. In specialty coffee a 'flash post' is defined as one ender 5 minutes. A slow post is defined as one petween 10 and 20 minutes.	Has held green and roasted coffee in their hands and able to discuss the main differences Distinguish between the different basic stages of coffee in a roast cycle visually Can control the heat element in a roaster. Can repeat a roast profile by	11	(Illy & Viani 2005; Huschke 2007) p. 18- 22 (Toci et al. 2009; Illy & Viani 2005) p. 179ff Pdf on calculating percentage of change Pdf with SCAE roast log	Yes	
--	--	---	----	--	-----	--

		repeating the heat element control plan for a roast. Can fill out a roast log correctly recording points in a roast specifically identified in an exam.				
2.1 Drying	Coffee is wet for conservational reasons: between 8 – 12.5% for specialty coffee. Because most of this will leave during the roasting process this is the main contributor to roast loss from green to roasted coffee. Applied heat is the driver of the drying process and this phase needs energy input all the time to progress.	Can operate a total moisture meter to measure total moisture level of green coffee.	L2	(Clarke & Vitzthum 2001; Huschke 2007) p 20ff	Yes	
	The drying process prepares the coffee for the later actual roasting process makes up approximately 60% of the overall process. So in a 15 minute roast the heating-drying phase will last around 10 minutes.					

	1st crack indicates the end of this stage of the process.					
2.2 Roasting	 When 1st crack is rolling the actual roasting process is starting. At this point in the roast most of the moisture has left and several different chemical processes have started. In general these processes leads to a brown colour of the beans but these chemical processes will start to <i>produce</i> heat so the roasting phase so now there is two sources of heat: (1) The heat source of the roaster and (2) inside each bean. 	Ability to record 1st crack correctly (not first individual bean cracking but the overall batch) Plan and execute a flame reduction at or around 1st crack		(Illy & Viani 2005; Huschke 2007) p. 18- 22		
2.3 Cooling	When roast colour is achieved cooling quickly is required to stop the roasting/colour development. 5 minutes for the beans to be below 30°C in the cooling tray is the rule of thumb for the cooling process.	Measure temperature of beans in cooling tray with an infrared thermometer. Feel with their hands if the beans are close to 30°C. Measure moisture level in roasted coffee		(Illy & Viani 2005; Huschke 2007) p. 21		
3.0 Light, Medium	All coffee has acidity and bitterness. For any given	Sensorially identify acidity	L1	(Clarke & Vitzthum 2001; Huschke 2007)	Yes x2	Yes

and Dark roasting	coffee the lighter the roast the more acidic and less bitter and vice versa (the darker the roast the more bitter and less acidic)	and bitterness in coffee.	p. 20, 26	
	As such the 'roast degree' is an integral part of a given 'product' sensory specification.			

Keywords

- 1st and 2nd crack.
- 8-12% moisture in green beans
- Air (drum environment) temperature probe
- Airflow, chimney
- Bean temperature probe
- Chaff. Chaff collector
- Charge/Drop temperature
- Cooling phase / cooling time
- Cooling tray
- Dark roast high bitterness low in acidity. Opposite relationship for light roasts
- Dropping temperature
- Drum rotation
- Drying phase
- End temperature
- Fire extinguisher (water vs. CO2)
- Fire in the chimney
- Fire in the drum
- Light roast vs Dark roast
- Moist vs. dry period
- Total moisture meter
- Percentage change
- Quenching

- Reducing points
- Roast degree / roast colour
- Roast loss
- Roast loss, Volume increase, density drop
- Roast profile (time x temp)
- Roasting curve
- Roasting cycle
- Roasting drum
- Roasting process
- Sample spoon / tryer
- Silver skin.
- Slow roast vs. flash roast
- Stirring device
- Sweet spot.
- Turning point (minimum profile temperature)
- Ventilation

Literature

Necessary:

- Enclosed compedium provided på your trainer on Percentage chage calculations, Green coffee harvest schedule and profile analysis
- "Industrial Coffee Refinement" Reinhard Huschke, Verlag Moderne Industrie, 2007

Optional

• "Espresso Coffee" Andrea Illy & Rinantonio Viani, Academic Press, 2005

Equipment required

- Total moisture meter
- Infrared thermometer to measure temperature of the beans in the cooling tray
- One roaster pr. 2-3 students

Intermediate

Pre-requisites for participation in the Intermediate certification process:

- Roasting Foundation
- Sensory Foundation
- Green Coffee Foundation

Level 3: Application – Use information in a new way								
Translate	Illustrate	Sketch	Sequence	Prepare				
Interpret	Operate	Employ	Carry	Generalize				
Apply	Demonstrate	Schedule	Out	Repair				
Practice	Dramatize	Use	Solve	Explain				

	Level 4: Analysis – Distinguish the different parts									
Distinguish	Contrast	Relate	Classify	Catalog						
Differentiate	Calculate	Experiment	Discover	Investigate						
Appraise	Criticize	Estimate	Discriminate	Breakdown						
Analyze	Examine	Observe	Identify	Order						
Compare	Test	Detect	Explore	Recognize						
Determine										

Curriculum

Торіс	Knowledge Required	Skill Required	Blooms Taxonomy	Reference	Practical Test	Written Test
1.0 Heat transfer	Heat is thermal energy inside a	Kontrol the heat surce in a coffee roaster		Wiki:Heat Wiki:Heat_transfer		

	material. Heat always goes from hot to cold materials. Heat can be transferred by different 'types' of heat transfer methods and different methods affects the beans differently			(Jansen 2006; Huschke 2007) p. 27ff (Huschke 2007; Illy & Viani 2005) p. 184ff (Belitz et al. 2009; Jansen 2006) p. 17f (Huschke 2007; Illy & Viani 2005) p. 183f (Clarke & Vitzthum 2001; Toci et al. 2009)	
1.1 Conduction/ Contact	Conduction is when materials touch each other and the heat diffuses from the hotter to the cooler body. Once the heat reaches the surface of the bean it is transferred inside bean by diffusing from the hotter surface to the colder centre which could lead to colour gradient inside bean	Identify burned spots on coffee as marks of aggressive contact heat transfer	L3	(Belitz et al. 2009; Clarke & Vitzthum 2001) p. 98-99 (Illy & Viani 2005) p. 183-184	Multiple choice
1.2 Convection	Convection is thermal energy transfer by means of hot air. It is a special kind of	Analyse a roast profile for the level of 'convection' in different stages of the roast (temperature difference between air and bean) and be	L4		Multiple choice

	contact heat	able to adjust this to design a			
	transfer since heat	roast profile			
	is transferred				
	when the hot air				
	touch/is in				
	contact with the				
	colder bean. The				
	magnitude of				
	temperature				
	difference				
	between then air				
	between the				
	beans and the				
	beans themselves				
	is the magnitude				
	of convection heat				
	transfer at any				
	given stage of the				
	roast				
1.3 Radiation	Radiation is		L4		Multiple
	electromagnetic				choice
	rays that naturally				enoice
	is emitted from a				
	heat source and				
	converted into				
	thermal energy in				
	the material it				
	reaches. Radiation				
	is not completely				
	converted into				
	thermal energy at				
	the surface of the				
	bean but there is				
	an absorption				
	gradient in the				
	bean so some heat				

2.0 Basic roasting and the roasting cycle	 is added inside the bean without affecting the surface Evaporation takes heat energy to proceed. Pyrolysis creates heat energy. Even if the same coffee is roasted to the same roast colour you can get very different sensorial results if the shape and timing in the roast profile is different. Roasting 'Defects' are worst case deviation from 'nice' profile. Cooling time about a mention of the stand of	Visually and sensorial identify roast defects (fast, scorched, baked, underdeveloped) and know their causes in different places in the roast cycle. Demonstrate the ability to design and execute different roast profiles.	(Baggenstoss et al. 2007; Illy & Viani 2005) p. 179ff + 192 (Illy & Viani 2005; Clarke & Vitzthum 2001) p. 90ff (Clarke & Vitzthum 2001; Jansen 2006) p. 14ff (Belitz et al. 2009; Huschke 2007) p. 20ff (Jansen 2006; Belitz et al. 2009) p. 940-943 Pdf with SCAE roast log	Yes	
2.1 Drying	should practically be as short as possible Moisture leaves	Visually identify beans at first	(Illy & Viani 2005; Huschke		Yes
	the beans during drying and goes from bean to the air between the beans that will become moist and get a higher specific heat capacity.	crack. Combine inlet temperature and initial flame control during a roast profile to avoid: 1. Scorching of beans 2. Underdevelopment of beans	2007) p 20ff (Clarke & Vitzthum 2001) p 90ff Wiki:Heat_capacity		

	Temperatures are held low by evaporating water because evaporation is an endothermic process.			
2.2 Roasting	 When the coffee is dry the temperature starts to rise quicker. The bean mass goes into pyrolysis where primarily the Maillard process is active. The Maillard process is active. The Maillard reaction and Strecker degradation are the main contributors to CO₂ formation. This CO2 formation. This CO2 formation becomes an additional source of pressure build up 	Demonstrate how to design and apply a flame control strategy around first crack that: 1. Prepares the last part of the roast from first crack 2. Continues until the target colour is achieved	(Jansen 2006; Belitz et al. 2009) p. 94	
2.3 Cooling	In specialty coffee air at room temp	Operate an infrared thermometer to monitor	(Clarke & Vitzthum 2001; Illy & Viani 2005) p. 181	

				ſ	
	is typically sucked	cooling time.	(Jansen 2006; Baggenstoss et		
	through the beans		al. 2007)		
	to cool them	Operate a total moisture			
	down.	meter to record and evaluate			
	In commodity	the moisture level in roasted			
	coffee water	bean.			
	quenching is often				
	used which is an	Determine if the residual			
	extremely rapid	moisture content of roasted			
	method that adds	beans meets quality			
	water to the	parameters that will allow for			
	roasting coffee to	preservation of aroma and			
	stop the roasting	shelf life.			
	process quickly.				
	If only a small				
	amount of water				
	is added hardly no				
	water will stay in				
	the coffee but if				
	too much is used				
	it will have a				
	detrimental effect				
	of coffee aroma				
	quality and makes				
	the coffee stale				
	quicker				
3.0 Basic	Coffee is an	Control the overall roasting	(Huschke 2007; Illy & Viani		Distinguish
properties and	organic substance.	process from green to	2005) p. 179ff		between
changes	Green coffee has a	roasted coffee at room	(Illy & Viani 2005; Clarke &		endo and
	high total	temperature	Vitzthum 2001) p. 90ff		exothermic
	moisture content:	^	(Clarke & Vitzthum 2001;		reactions
	8-12.5%.		Belitz et al. 2009) p. 938ff		
			Pdf on calculating percentage		
	Drying green		of change		
	coffee makes		 _		

	roasting possible. Pyrolysis is an exothermic anaerobe (does not need oxygen) process that drives a range of different chemical reactions that start around 1st crack.			
3.1 Volume change	 Volume increases due to material gets soft when heated combined with water evaporating into steam and pyrolysis creates organic gasses + CO₂. A pressure is build-up by the evaporating water that will later be the primary driver of bean swelling. If this part is to slow (to low flame) the gas would leak before creating a pressure high enough to expand the bean and the coffee will be 	Distinguishing different crack intensities and how it depends on energy transfer speed and make changes to the flame profile if the crack is not audible or just not loud enough. Measure and compare volume before and after roasting.	(Jansen 2006) p. 30f (Illy & Viani 2005) p. 180 (Huschke 2007; Clarke & Vitzthum 2001) p. 94	

3.2 Weight change	'underdeveloped'.If this part is tooquick (to highflame) the surfaceof the bean will bescorched.Water in form ofvapour andorganic material islost whenconverted into gasthat leaves thematerial	Measure weight of green and roasted coffee and calculate the difference. Calculate density and calculate density change from green to roasted coffee.	(Illy & Viani 2005; Jansen 2006) p. 34 (Jansen 2006; Clarke & Vitzthum 2001) p. 94 Pdf on calculating percentage of change	Weigh the coffee before and after roasting	Yes
3.3 Colour change	The product of Maillard reaction (melanoidins) is brown and happens quickly after drying is finished slightly above 100° Celsius. Know different industry standards for measuring colour. Some measure wavelength as well as reflection	Use different types of colour measurement equipment and interpret the value in terms of product development, laboratory roasting and regional/cultural differences in roast degree preferences.	(Huschke 2007; Jansen 2006) p. 19 & 28f (Morgan & Brenig-Jones 2012; Huschke 2007) p. 24	Measure the colour on a colour measurement meter. Cupping of same coffee roasted to 4 different degree of darkness. Guess which of 5 samples are taken out when 1st crack stops	
3.4 Sugar change	intensity Caramelization happens at high temperature (closer to 200° Celsius) so the Maillard reaction		(Tisbury 2012; Illy & Viani 2005) p. 193		Yes

	is much more pronounced due to it's lower activation temperature				
3.5 Acidity change	Acids are created very early in the process. The amount of different acids present in coffee changes as the roast degree continues. Most acids are reduced when darker, more typically commercial roast degrees are reached	Sensorial identify and rank acidity level. Use this sensory analysis as an indicator of roast level		(Illy & Viani 2005; Clarke & Vitzthum 2001) p. 18-30 (Clarke & Vitzthum 2001; Jansen 2006) p. 46-67, 57-61	Yes
4.0 Machine construction	Drum roaster. Fluid bed roaster. Batch vs. continuous roaster.	Understand the basic differences in design of commonly found roasters including: • Horizontal drum Roaster • Fluid Bed Roaster • Continuous Roaster Demonstrate an ability to safely experiment with any type of roasters to achieve a desired result based on cupping		(Huschke 2007; Illy & Viani 2005) p. 184ff (Jansen 2006; Huschke 2007) p. 27ff	
4.1 Ventilation	In the roast chamber: the airflow mixes	Explain how to install an exhaust chimney without causing problems such as	L4	Consult the manual for a given roaster for specifications and	Yes

	 the hot air into the batch of beans and creates convention heat transfer In the chimney: Avoid resistance (length + bends). Organic build up adds resistance and increases fire risk 	resistance that can lead to fire. Demonstrate knowledge of methods that can be used to maintain roaster exhausts such as chimney sweeps.		requirement for installation, maintenance of ventilation system	
4.2 Electricity	Electrical burners possible on small (batch size 12 and less) roasters Electrical heating elements are slow but are fine for roasting. Electricity always drives motors and general control circuits.	Plan roast profiles on gas and electrical roasters and understand how to compensate for differences in timing.			
5.0 Workspace management	Green coffee storage (60% relative humidity - 12% bean). Roaster, de- stoner, packing area, one-way valve bags, air filters, Lean management (5S). Production flow.	 Plan a work space for: roasting packing maintenance cleaning laboratory analysis 	L4	(Morgan & Brenig-Jones 2012; Illy & Viani 2005) p. 111 (Clarke & Vitzthum 2001; Jansen 2006) p. 12	Yes

5.1 Tools for	Food grade	Understand that coffee is a	L3	(Illy & Viani 2005; Huschke	
roasting	equipment to	food product		2007) p. 6-7 + 65	
5	support product	-			
	handling such as:	Explain the use of various			
	• buckets/bins	supporting tools and			
	for green and	equipment and their			
	roasted	application to coffee roasting			
	beans(buffers)				
	 shovel/scoops 				
	for				
	Other equipment				
	to support the				
	roasting process				
	includes:				
	• Logging				
	sheets/softwa				
	re. • Timer				
	-				
	Temperature probes.				
	 Hand held 				
	thermometer				
	(infrared).				
	 Moisture, 				
	density meters				
	 roast colour 				
	meters				
	Scales				
	It is important to				
	organize the work				
	place so that you				
	can store green				

	I	1	[1	,
	and roasted coffee				
	in safe containers				
	with full batch				
	traceability.				
	Ergonomic tools				
	are available for				
	handling coffee.				
	nanuning conee.				
	A quality control				
	system either				
	manual pen-and-				
	paper or logging				
	software is				
	important for				
	both food safety				
	and quality.				
	Basic lab				
	equipment to				
	monitor quality of				
	green and roasted				
	coffee supports				
	roasted product				
	safety, quality and				
	consistency over				
	time	<u> </u>			
5.2 Cleaning,	Cleaning and		L3	Should be described in the	
Maintenance &	maintenance			machine's instructions	
Troubleshooting	schedule.			manual	
				(Jansen 2006; Morgan &	
				Brenig-Jones 2012) p. 151	
				(Belitz et al. 2009; Tisbury	
				2012)	
5.3 Ventilations	Highly flammable	Plan the ventilation aspect of			

r	-		1		1
	dry organic	a coffee roaster installation			
	material builds up	with respect to quality of the			
	inside the	roasting process, variation			
	ventilation	and fire prevention and			
	system.	extinguishing.			
	Unfortunate				
	consequences are:				
	resistance to				
	airflow if the				
	tubes are clogged				
	and fire risk!				
	Depending of the				
	brand of roaster				
	and ventilation				
	system cleaning of				
	the inside of the				
	pipes should be				
	done every 2 to 6				
	months.				
	Install clean out				
	doors at				
	appropriate areas				
	of the chimney				
	where build-up is				
	forming so that it				
	is easy to clean				
5.31 Chaff	The silver skin of	Plan fire prevention and	L3		
collector	the green beans	extinguishing			
	fall of during				
	roasting because	Be aware that chaff collectors			
	the coffee beans	are a very typical place for			
	expand and open	fires to start			
	up. This silver				
	skin is called chaff				
	in roasted coffee				
	and is collected in				

				1	1
	below a cyclone				
	made for the				
	purpose called				
	'Chaff collector'.				
5.32 Exhaust air	A number of	Plan appropriate exhaust			
cleaning	methods are	cleaning to reduce needed			
	available in the	frequency for chimney			
	marketplace for	sweeping, reduced fire risk			
	cleaning exhaust	and reduced risk for			
	air. These	neighbour complaint due to			
	include:	coffee roast odour in the			
	Afterburner	neighbourhood.			
	electro static				
	ceramic beds				
	• ozone				
	UV light				
	water curtain				
	 recycling 				
	exhaust air				
	into burner				
5.4 Cooling tray	Coffee should be	Obtain appropriate tool and			
5.4 Cooling tray	hand warm max 5	maintenance plan for keeping			
	minutes after	the cooling tray holes clean to			
	roasting.	avoid reduced airflow in			
	Cooling tray	cooling tray due to clogged			
	screen should be	holes.			
	cleaned regularly	Install inexpensive extra fans			
	to keep cooling	can speed up the cooling			
	time down. Expect	process by blowing onto the			
	season variation	cooling coffee.			
	on cooling time as	cooming conce.			
	the surrounding				
	air is involved in				
	the cooling				
	-				
	process.				

Keywords

- 1st and 2nd crack.
- 8-12% moisture in green beans
- After burner
- Air (drum environment) temperature probe
- Airflow, chimney
- Bean temperature probe
- Buildup in chimney Fire risk!
- Chaff. Chaff collector
- Charge/Drop temperature
- Conduction/contact/diffusion, radiation and convection heat transfer
- Cooling phase / cooling time
- Cooling tray
- Dark roast high bitterness low in acidity. Opposite relationship for light roasts
- Destoner
- Development time (from 1st crack to end of roast)
- Dropping temperature
- Drum rotation
- Drying phase
- Electrostatic filter
- End temperature
- Endotermic
- Evaporation is endothermic
- Exhaust filtration
- Exothermic
- Fire extinguisher (water vs. CO2)
- Fire in the chimney
- Fire in the drum
- Fluid bed roaster
- Grade. Screen. Bean size variation.
- Heat vs. temperature
- Lean production
- Maillard reaction
- Moist vs. dry period
- Moisture meter
- Myco toxins.
- Natural processiong
- Organic acids creation and degradation
- Percentage change
- Pre-blending vs. post-blending
- Processing
- Profile logging software
- Pupled Natural
- Pyrolysis
- Quenching
- Rate of Rise
- Reducing points
- Roast air temperature vs. product temperature.
- Roast colour meter

- Roast defects (scorched, baked, underdeveloped)
- Roast degree / roast colour
- Roast gases
- Roast logging system
- Roast loss
- Roast loss, Volume increase, density drop
- Roast profile (time x temp)
- Roasting curve
- Roasting cycle
- Roasting drum
- Roasting process
- Silver skin.
- Slow roast vs. flash roast
- Storage conditions 12% bean moisture vs 60% RH in storage room
- Sweet spot.
- Turning point (minimum profile temperature)
- Ventilation
- Washed coffee

Literature

- Belitz, H.D., Grosch, W. & Schieberle, P., 2009. Food Chemistry, Springer
- Clarke, R. & Vitzthum, O.G., 2001. Coffee, Wiley-Blackwell
- George, M.L. et al., 2005. The Lean Six Sigma pocket toolbook, McGraw Hill
- Illy, A. & Viani, R., 2005. Espresso Coffee
- Huschke, R., 2007. Industrial Coffee Refinement
- Jansen, G.A., 2006. Coffee Roasting
- Morgan, J. & Brenig-Jones, M., 2012. Lean Six Sigma For Dummies, John Wiley & Sons
- Enclosed compedium provided på your trainer on Percentage chage calculations, Green coffee harvest schedule and profile analysis
- (Bertrand et al. 2012; Huschke 2007)

(Illy & Viani 2005; Jansen 2006)

(Illy & Viani 2005; Morgan & Brenig-Jones 2012)

Equipment required

- One coffee roaster (size 500g 12kg) per 2-3 students. Specification to include:
 - Bean probe installed
 - Exhaust temperature gauge installed
 - \circ Variable burner (gas/electric) integrated into design
 - Profiling software is optional but not necessary
- Natural daylight roasting light with CRI of 96 and K rating of 6500K
- Moisture meter for measuring moisture level in green beans and roasted coffee
- Density meter for green and roasted coffee
- Roast colour measure meter

Professional

Pre-requisites for participating in the certification process:

- Roasting Intermediate
- Sensory Intermediate
- Green Coffee Intermediate

Level 5 & 6: Synthesis – Create a new point of view							
Compose Plan Propose Design Assemble Create							
Organize	Manage	Construct	Set-Up	Prepare	Write		
Identify	Integrate	Produce	Theorize	Build	Systematize		
Formulate							

Level 6: Evaluation – Justify a position								
Judge	Judge Select Verify Choose Score Appraise							
Review	Measure	Assess	Compute	Decide	Revise			
Evaluate Value Test Categorize Estimate								

Curriculum

Торіс	Knowledge Required	Skill Required	Blooms Taxonomy	Reference	Practical Test	Written Test
1.0 Green coffee	Be able to identify parts of the anatomy of the coffee cherry. Skin, pulp, parchment, pergamino, silverskin, bean. Physical attributes of	Analyse green coffee with respect to bean size, density and total moisture level and design roast profiles according to the results		(Illy & Viani 2005; Clarke & Vitzthum 2001) p. 938 (Gonzalez-Rios & Suarez-Quiroz 2007b; Illy & Viani 2005) p. 87-102		

1.1 Chemistry of green coffee	green coffee including density, size, shape and moisture level vary from lot to lot		(Gonzalez-Rios & Suarez-Quiroz 2007a; Jansen 2006) page 8-11. (Illy & Viani 2005; Belitz et al. 2009) page 941, table 21.2	
1.2 Physical properties of green beans (moisture, density, size)	 Moisture level depends on: proper drying in the producing country and in correct transportation and storage conditions. 8-12.5% moisture is normal for specialty coffee although around 10- 12% is the ideal. Higher than 12% and there is risk for mould formation. Lower than 8% and the tissue starts to get damaged and important substances can evaporate even at room temperature. 	Be able to measure moisture, density and size of beans and use the information to design roast profiles	(Illy & Viani 2005; Jansen 2006) page 8- 11. (Guenther et al. 2007; Belitz et al. 2009) page 941, table 21.2 (Suarez-Quiroz & Gonzalez-Rios 2004; Bertrand et al. 2012) (Illy & Viani 2005) p. 149-150 Bean size: (Clarke & Vitzthum 2001; Illy & Viani 2005) p. 103, 135-136	

1.3 Chemical properties of different processing methods	size and shape and this impacts on roasting strategies. Density in green coffee is strongly correlated with the altitude of a coffee growing area and also varies by species and variety Small sugars are washed out with the washed process so it appears more acidic and with a lower body. More small sugars are available in natural coffee so it appears sweeter, with higher body, more bitter and darker as the Maillard process has more reducing sugars to progress at a given bean temperature	Understand and adapt when different processing methods behaves differently in the roasting process. Chose specific processing methods for different products depending on customer preferences for the product.	(Jansen 2006; Illy & Viani 2005) p. 99 (Huschke 2007; Gonzalez-Rios & Suarez- Quiroz 2007b) (Clarke & Vitzthum 2001; Gonzalez-Rios & Suarez-Quiroz 2007a)	
1.4 Health related	Ochratoxins are cancer risk factors	Demonstrate the ability to	Ochratoxins: (Toci et al. 2009; Illy & Viani 2005) p. 209	
issues of green	developed by fungi	discuss health	Achrylamide: (Huschke 2007; Illy &	
coffee.	during processing in	related topics	Viani 2005) p. 368f	
Ochratoxins,	the production	relating to	Plenty info on the internet if these	
Achrylamide	countries. The	coffee roasting	concepts are googled so the following	
	concentration of	with customers	scientific articles are not necessary to	

		1 1		
	Ochratoxins will be	as well as	read:	
	reduced yet not	authorities.	(Huschke 2007; Guenther et al. 2007)	
	eliminated during		(Clarke & Vitzthum 2001; Suarez-Quiroz	
	the roasting process.	Recognise that	& Gonzalez-Rios 2004)	
	The better grade of	in many		
	green coffee beans	countries it is a		
	will contain less	normal		
	Ochratoxins.	requirement or		
	Achrylamide is	part of due		
	another cancer risk	diligence to get		
	factor developed	coffee analysed		
	during the roasting	for certain		
	process yet also	residues.		
	degraded by time so			
	slow roasted coffee	Explain that this		
	contains almost	documentation		
	noting whereas flash	may be needed		
	roasted coffee	either starting a		
	contains a	roastery (the		
	considerable amount	authorities) or		
		when exporting		
		coffee or selling		
		to large		
		institutions		
2.			(Illy & Viani 2005) p. 179ff + 192	
Physics of			(Clarke & Vitzthum 2001) p. 90ff	
coffee roasting			(Illy & Viani 2005; Jansen 2006) p. 14ff	
conceredening			(Jansen 2006; Huschke 2007) p. 20ff	
2.1	Building on the	Be able to	(Rivera et al. 2011; Clarke & Vitzthum	
Heat transfer	knowledge from	analyse and	2001) page 90-100	
	Intermediate on	explain any	(Meste et al. 2002; Toci et al. 2009)	
	Contact, convection	given roasting	(Illy & Viani 2005; Huschke 2007) page	
	and radiation in this	technology in	18-24	
	section there is a	terms of		
	bigger focus on the	ascientific		
	dynamics of heat	understanding		

	transfer	of heat transfer applied by that technology	
2.11 Heat transfer between materials (hot to cold)	Heat as molecular vibration diffuses between material and internally in material as soon as there is a temperature difference where heat diffuses from higher temperature to lower temperature	Explain visualize and explain 'diffusion' of heat	Wiki:Heat_transfer Image: state of the state
2.111 Transfer of heat from roaster to bean	As consequence of 2.11 conductive heat will diffuse from the heating element of the roaster and onto the bean surface	Analyse the temperature difference between air and bean at any given point of a roast and understand how the temperature difference drives the speed of the roast at any given point. Apply this understanding to practical roasting techniques	(Jansen 2006; Huschke 2007) p. 27-39 (Clarke & Vitzthum 2001) p. 101-104 (Clarke & Vitzthum 2001; Illy & Viani 2005) p. 184-187 Wiki: Diffusion
2.112	When the conductive	Understand how	(Jansen 2006; Clarke & Vitzthum 2001)
Transfer of	heat reaches the	to avoid	p. 98-99

heat from bean surface to bean centre 2.12	surface of the bean it is up to the conductivity coefficient to diffuse the heat towards the centre of the bean. The temperature difference between hot air and bean will drive the speed of the diffusion of heat from the hot air to the colder bean The heat capacity of	extreme temperature differences because an unfortunate roast degree gradient will be formed in the beans Apply this understanding in a practical roasting examination Display an	(Clarke & Vitzthum 2001; Illy & Viani 2005) p. 183-184 Wiki:Moisture	
Heat capacity of dry vs. moist air.	moist air is higher than dry air so moist air is more efficient at conduction heat from air to beans. This is a technical focus of some roasting technologies.	ability to control moisture level by controlling airflow speed or understand an important difference with roaster technology where exhaust air is recalculated into the roasting chamber	Wiki:Heat_capacity	
2.2 Physical changes of beans				
2.21 Glass transition	Green beans at room temperature are		(Huschke 2007; Jansen 2006) p. 32-34 (Belitz et al. 2009; Rivera et al. 2011)	

temperature	'glass like' in their structural appearance but polymeric material like green beans will become 'leathery' or malleable when the glass transition temperature is reached so they are leathery during the roasting process but becomes glass like again soon after reaching the cooling		(Clarke & Vitzthum 2001; Meste et al. 2002) Wiki:Glass_transition	
0.00	tray		(Houte Cohönomone Doute or ot al	
2.22 Roast gasses.	First water (8-12.5% moisture of the green bean) will turn into vapour when heated. Later the Maillard reaction, Strecker degradation, Caramelization and decarboxylation of organic acids will create organic roast gasses like CO ₂ and other small organic gasses		(Hertz-Schünemann, Dorfner, et al. 2013a) (Hertz-Schünemann, Streibel, et al. 2013b)	
2.23	The 'leathery'	Demonstrate an	(Belitz et al. 2009; Illy & Viani 2005) p.	
Expansion	material with	ability to control	182	
(spongious).	developing gasses	a roast so that	(McGee 2004; Jansen 2006) p. 23-26,	
	(vapour, CO_2 and	oils do not	30-44	
	organic gasses) will	migrate to the	(Illy & Viani 2005; Clarke & Vitzthum	

	expand and the	surface of the		2001) p. 94	
	dense materiel will	roasted beans			
	become a spongious	during exercises			
	structure with many	(Noto, In this			
	small gas pockets and channels.	(Note: In this			
	Oils can travel	exam no roasts			
	through these	progress beyond second crack)			
	channels	Second Cruckj			
	channels				
	Roast profiles which				
	are not managed				
	correctly can lead to				
	a migration of oils to				
	the surface. These oils will become				
	rancid when O ₂ from				
	the air reaches the				
	oils				
2.24	Water will leave the			(Clarke & Vitzthum 2001) p. 93-94	
Loss of water	material in an			(Jansen 2006) p. 33-34	
	opposite direction of				
	the heat going in.				
	This is a prerequisite				
	for the pyrolysis to				
	take place.				
	·····				
	This is the major				
	contributor to roast				
	loss				
2.25	The darker the roast	Apply	L4	(Clarke & Vitzthum 2001) p. 94-95	
Physical	the more spongious	knowledge of		(Jansen 2006; Huschke 2007) p. 23	
reason for	the bean material	roast bean			
increased	with bigger internal channels that the	development to basic espresso			
	chainers that the	Dasic espiesso			

solubility of	water can run	extraction		
dark roasted	through and harvest	parameters for		
coffee	the soluble	different roast		
conee	molecules. The less	heights.		
	spongious and	neights.		
	smaller cannels the	Specifically		
	less able the water is	know that when		
	to harvest the	talking to clients		
	soluble molecules in	that extraction		
	the more dense	methodology		
	material	will be different		
	material	because it is		
		harder to		
		extract from a		
		lighter roasted coffee than dark		
		roasted coffee		
		where all other		
		parameters		
2.0		remain equal	(Janson 2006, Politz et al. 2000) norge	
3.0			(Jansen 2006; Belitz et al. 2009) page 940-941	
Chemistry of				
coffee roasting			(Clarke & Vitzthum 2001) p. 13-14, 79,	
			82-85, 90-100	
0.4. Oalaum			(Illy & Viani 2005) p. 194 Fig. 4.11	
3.1 Colour	The brown colour of	Demonstrate an	(Illy & Viani 2005; Belitz et al. 2009) p.	
	coffee is primarily	ability to use	940, 284 (January 2006, Marcan 2004) a 770	
	caused by the	roast colour	(Jansen 2006; McGee 2004) p 779	
	Maillard reaction	measurement	(Clarke & Vitzthum 2001; Illy & Viani	
	and to a lesser	equipment and	2005) p. 193 Clarks & Vitethum 2001) r 12	
	extends by	interpret the	(Clarke & Vitzthum 2001) p.13	
	Caramelization.	result for use in	(Belitz et al. 2009; Jansen 2006) p. 64 Wiltin Molangidin	
	Since there is such	general profile-	Wiki: Melanoidin	
	an intimate	product		
	relationship between	development.		
	the aroma chemistry			

	and colour, colour is an important macroscopic indicator followed closely by the roast master during roasting.	Explain that this equipment is a useful tool for analysis of variation tolerance for at given product during normal production processes		
3.2 Chemical reason for increased solubility of dark roasted coffee	Hydrolysis of carbohydrate makes the big pollysacharides more soluble (polar) and smaller so they easier move through the coffee-water matrix. The di- and mono saccharides are cleaved into acids and other smaller polar compounds which makes them move quicker in the coffee-water matrix	Specifically know that when talking to clients that extraction methodology will be different because it is harder to extract from a lighter roasted coffee than dark roasted coffee where all other parameters remain equal	Wiki:Hydrolysis	
3.4 Acidity		Use the sensory level of acidity to evaluate roast degree. Separate quality of acidity from intensity of acidity.	(Clarke & Vitzthum 2001) p. 18-30 + 59 (Bhumiratana et al. 2011; Jansen 2006) p. 46-67, 52-53, 57-61 (Illy & Viani 2005) p. 194 Fig 4.11	

		Analyse the quality of acidity to determine optimum roast profile.			
3.4.1 Acids from green coffee	Some acids are already present in green coffee such as Chlorogenic, citric and malic acids	Understand the signs of a fast roast and demonstrate how to adjust a roast when it is too fast ie. the chlorogenic acids are not degraded enough		(Illy & Viani 2005; Jansen 2006) p. 52- 53 (Illy & Viani 2005; Clarke & Vitzthum 2001) p. 158 (Parat-Wilhelms et al. 2005; Illy & Viani 2005) p. 195-196	
3.4.2 Acids developed during roasting	Some acidic compounds are derivatives of carbohydrate (acetic, formic, lactic, clycolic) and are developed very early in the roasting process and later degraded as the coffee becomes darker around and after 1st crack.			(Morgan & Brenig-Jones 2012; Jansen 2006)p. 58 fig 33 (George et al. 2005; Clarke & Vitzthum 2001) p. 22-25 (Illy & Viani 2005) p. 196-197	
3.5 Bitterness	Bitterness is primarily developed by the products of the Maillard reaction so a darker roast leads to higher	Demonstrate an ability to control the level of bitterness by controlling end colour whilst	L4	Bitterness (Morgan & Brenig-Jones 2012; Clarke & Vitzthum 2001) p. 53	

3.6 Aroma of roasted coffee	bitterness On a crude level Flavour of coffee changes with roast degree but on a more subtle level even the same colour could express many different sensory properties depending of the specific temperature profile applied. Thousands of aromas are present in roasted coffee but on a basic level 28 aromatic substances can largely approximate 'coffee	still retaining other positive sensorial attributes in a coffee Demonstrate skills in expressing different characteristics of the same coffee at the same roast colour but with different roast profiles	L5	(George et al. 2005; Belitz et al. 2009) page 942-948 (Tisbury 2013; Clarke & Vitzthum 2001) p. 74-79 (Tisbury 2013; Bhumiratana et al. 2011)	Recognize: -Baked, scorched, fast, underdeveloped
3.7 Roast speed	aroma' The speed of the roasting process determines the kind of chemical reactions happening			(Toci et al. 2009) (Schenker et al. 2002) (Bicho et al. 2013)	
4.0 Sensory					
4.1 Taste and smell	Understand how tasting (gustation) and smelling (olfaction) is interconnected and	Understand and explain the importance and reasons behind the 'slurping'		(Tisbury 2012; Illy & Viani 2005) p. 316 - 351	

	the related anatomy	technique when		
		cupping to		
		colleagues and		
		customers		
4.2 Evaluation	In-out cupping.	Show how to	Intermediate sensory in the SCAE	
methodology	Triangulation.	apply this	Certification Diploma System	
0,		sensory		
		methodology		
		when making		
		decisions. For		
		example when		
		developing new		
		roast profile or		
		new products		
5 Business	Basic understanding	Show an ability	Business model canvas. Book, canvas	
	of the elements of a	to visualize and	and videos available for free on website:	
	business. The	understand a	www.businessmodelgeneration.com	
	business model	given roasting	Wiki:Kano_model	
	canvas is an intuitive	business and		
	and easy approach	make better		
	that is suitable for	strategic		
	people without a	decisions on		
	mercantile	which focus is		
	background.	the better when		
	The Lean KANO	developing a		
	analysis (voice of the	given business		
	customer	(business model		
	methodology)	innovation).		
		The model is a		
		tool to better		
		understand		
		business		
		development		
		and a tool for		
		communicating		

		any given			
		business.			
		Be aware that			
		this is an			
		advantage when			
		investors or a			
		bank is			
		approached.			
5.1 Price	The cost related to	Explain how to			
calculations	production of coffee	manage cost and			
ouloulationio	including how to	calculate profit			
	manage roast loss in	for a given			
	price calculations	product or for a			
		given quotation			
		to a specific			
		customer. The			
		price calculation			
		must still be			
		profitable for			
		the roasting			
		business in the			
		working			
		example			
5.2 Product	Central parameters	Have an ability			
		-			
parameters	for NPD (new	to design a			
	product	product with			
	development)	respect to			
	Linking a second sting a	specific demand			
	Linking roasting	from a specific			
	product	customer			
	development with	segment			
	sensory aspects of				
	NPD	Show how to			
		select			
		appropriate			

		tests to test a			
		product and			
		create a robust			
		roasting			
		specification			
		that can align			
		with a sensory			
		specification			
5.21	(1)Arabica/Robusta	See 1.2			
Bean genetics,	(2)Large Beaned				
bean terroir	Arabica vs std				
	screens				
	15/16/17/18				
	(3) Pea Berry				
	(4)High grown Vs				
	low grown				
	(5) Decaff				
5.24	Post blending	Recognise that			
Pre/post blend	provides the	there are			
	opportunity to roast	different			
	each component	strategies for			
	optimally but has the	creating			
	cost of extra	blended			
	production steps.	products			
	When pre blending				
	you have to roast the	Relate these			
	'best compromise'	strategies to:			
	but saves the extra	Equipment			
	production step.	fit out			
	The right choice is	 site layout 			
	the best cost-benefit	roast profile			
	depending on needs	development			
	of i) the customer	 product 			
	and ii) the roasting	costing			
	operation				

E 0E	Mills above a the			(Margan & Dramig Laws 2012 Ill-	[]
5.25	Milk changes the			(Morgan & Brenig-Jones 2012; Illy &	
Addition of milk	appearance of coffee			Viani 2005) p. 202	
to coffee	and dampens some			(Illy & Viani 2005; Parat-Wilhelms et al.	
	taste and flavours			2005)	
	but adds a creamy				
	aspect. If the				
	customer adds milk				
	it is important to				
	design the product				
	so the coffee still has				
	the right appearance				
	for the customer				
	after the milk is				
	added				
6	Basic knowledge of	Ability to design		(Jansen 2006; Morgan & Brenig-Jones	
	e				
Roastery	Lean production	and operate a		2012)	
management		production that		(Belitz et al. 2009; George et al. 2005)	
		is designed			
		around the			
		preferences and			
		demans of			
		customers with			
		maximum			
		uptime and			
		most satisfied			
		customers			
		(fewest defects)			
6.1 Batch size		Calculate the	L4/L5		
requirements		size of the			
related to		roaster needed			
yearly turnover		for a specific			
calculations		business			
		scenario			
		Be able to apply			
		knowledge of			
		intownedge of	1		

6.2 Environment. Pollution. Neighbour complaints. Regulation (EU, local authorities). Filter options.	Afterburner, electro static filter, ceramic beds, ozone, UV light, water curtain, recycling exhaust air into burner	maintenance scheduling to this capacity planning	(Huschke 2007) 55-58Articles on environment issues from Roast Magazine Blowing Smoke—Ways to clean up, reduce and recirculate roaster emissions (Sept/Oct 2006; pg. 24)Clear the Air—Removing the myths of emission control (March/April 2004; pg. 33)Stack Overflow—A no-loss stack can make your roastery more efficient (and keep your neighbours
			happy) (Sept/Oct 2009; pg. 46) The Brave World of Energy-Efficient Roasting—A generation of technologies saves energy and money (July/Aug. 2008; pg. 20)
6.3 Work space design	Draw a production flow. PEMME, SIPOC, KANBAN	Design a workplace using basic lean production approaches	(Clarke & Vitzthum 2001; Morgan & Brenig-Jones 2012) (Belitz et al. 2009; George et al. 2005)
6.4 Work space	Lean 5s methodology to	Ability to tidy up the workplace	(Clarke & Vitzthum 2001; Tisbury 2013) Wiki:Fire_triangle Wiki:Fire_extinguisher

management	tide up the workplace. Fire prevention and extinguishing	systematically. Prevent and fight fires	(George et al. 2005; Tisbury 2013)
6.5 Purchase planning	Knowledge of seasonality of coffee availability and lead times in the supply chain Know that this applies for all coffees and planning in advance is necessary when specific named farms and traceability are built into product specifications	Demonstrate knowledge of how to plan ahead to secure amounts of green coffee needed from harvest to harvest to ensure continuity of supply	Wintgens (2009)
6.6 Online and offline measurement equipment. Profile logging software. Handling measurement variation.		Be able to discuss the merits of profiling software available in the marketplace Be able to discuss the differences between manual data logging and automated systems	www.coffee-mind.com/variation- analysis/ Profiling software manufacturers specifications
6.7		Understand	(Jansen 2006; Tisbury 2012)

Scheduled	maintenance	(Clarke & Vitzthum 2001; Morgan &	
maintenance	necessary on	Brenig-Jones 2012) p. 150	
	different		
	roasting	Manufacturers specifications	
	systems.		
	Explain how to		
	build		
	maintenance		
	into workflow		
	planning in a		
	roastery		

Keywords

- 1st and 2nd crack.
- 5S
- 8-12% moisture in green beans
- Acrylamide
- After burner
- Air (drum environment) temperature probe
- Airflow, chimney
- Batch traceability in production system
- Bean temperature probe
- Buildup in chimney Fire risk!
- Business model canvas
- Caramelization
- Charge/Drop temperature
- Chemical browning reactions are driven by temperature
- Chemical properties
- Conduction/contact/diffusion, radiation and convection heat transfer
- Cycklic vs Aliphatic acids
- Development time (from 1st crack to end of roast)
- Diffusion: Gas and temperature
- Electrostatic filter
- Endotermic
- Evaporation is endothermic
- Exhaust filtration
- Exothermic
- Glass transition temperature
- Grade. Screen. Bean size variation.
- Heat vs. temperature
- In-out cupping
- KANBAN
- Key odorants
- Lean production
- Maillard reaction
- Moisture meter
- Myco toxins.
- Natural processiong
- Organic acids creation and degradation
- PEMME
- Physical properties
- Pre-blending vs. post-blending
- Processing
- Profile logging software
- Pupled Natural
- Purchase planning
- Pyrolysis
- Quenching
- Rate of Rise
- Roast air temperature vs. product temperature.
- Roast colour meter
- Roast defects (scorched, baked, underdeveloped)

- Roast degree / roast colour
- Roast gases
- Roast logging system
- Roast loss
- Roast loss, Volume increase, density drop
- Roast profile (time x temp)
- Roasting curve
- Roasting drum
- Roasting process
- SIPOC
- Soluble solids
- Storage conditions 12% bean moisture vs 60% RH in storage room
- Strecker degradation
- Sweet spot.
- Thermal energy molecular vibration. Absolute zero/Kelvin scale
- Triangulation
- Turning point (minimum profile temperature)
- Washed coffee
- Water activity (steam pressure, Chemical reactions during roast, degassing speed)

Literature

Enclosed compedium provided på your trainer on Percentage chage calculations, Green coffee harvest schedule and profile analysis

- Baggenstoss, J. et al., 2007. Influence of Water Quench Cooling on Degassing and Aroma Stability of Roasted Coffee. *Journal of Agricultural and Food Chemistry*, 55(16), pp.6685–6691.
- Belitz, H.D., Grosch, W. & Schieberle, P., 2009. Food Chemistry, Springer.
- Bertrand, B. et al., 2012. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. *FOOD CHEMISTRY*.
- Bhumiratana, N., Adhikari, K. & Chambers, E., IV, 2011. Evolution of sensory aroma attributes from coffee beans to brewed coffee. *LWT Food Science and Technology*, 44(10), pp.2185–2192.
- Bicho, N.C. et al., 2013. Impact of Roasting Time on the Sensory Profile of Arabica and Robusta Coffee. *Ecology of Food and Nutrition*, 52(2), pp.163–177.
- Clarke, R. & Vitzthum, O.G., 2001. Coffee, Wiley-Blackwell.
- George, M.L. et al., 2005. The Lean Six Sigma pocket toolbook: A quick reference guide to nearly 100 tools for improving process quality, speed, and complexity. McGraw Hill
- Gonzalez-Rios, O. & Suarez-Quiroz, M.L., 2007a. Impact of "ecological" post-harvest processing on coffee aroma: II. Roasted coffee. *... Journal of Food ...*.
- Gonzalez-Rios, O. & Suarez-Quiroz, M.L., 2007b. Impact of "ecological" post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. *... Journal of Food ...*.
- Guenther, H. et al., 2007. Acrylamide in coffee: Review of progress in analysis, formation and level reduction. *Food Additives and Contaminants*, 24, pp.60–70.
- Hertz-Schünemann, R., Dorfner, R., et al., 2013a. On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch

roasting to flavour formation inside an individual coffee bean. *Journal of Mass Spectrometry*, 48(12), pp.1253–1265.

- Hertz-Schünemann, R., Streibel, T., et al., 2013b. Looking into individual coffee beans during the roasting process: direct micro-probe sampling on-line photo-ionisation mass spectrometric analysis of coffee roasting gases. *Analytical and Bioanalytical Chemistry*, 405(22), pp.7083–7096.
- Huschke, R., 2007. Industrial Coffee Refinement,
- Illy, A. & Viani, R., 2005. Espresso Coffee,
- Jansen, G.A., 2006. Coffee Roasting,
- McGee, H., 2004. On food and coking. The science and lore of the kitchen. null, p.null.
- Meste, M.L. et al., 2002. Glass Transition and Food Technology: A Critical Appraisal. *Journal of Food Science*, 67(7), pp.2444–2458.
- Morgan, J. & Brenig-Jones, M., 2012. Lean Six Sigma For Dummies, John Wiley & Sons.
- Parat-Wilhelms, M. et al., 2005. Influence of defined milk products on the flavour of white coffee beverages using static headspace gas chromatography–mass spectrometry/olfactometry and sensory analysis. *European Food Research and Technology*, 221(3-4), pp.265–273–273.
- Rivera, W. et al., 2011. Effect of the roasting process on glass transition and phase transition of Colombian Arabic coffee beans. *Procedia Food Science*, 1(0), pp.385–390.
- Schenker, S. et al., 2002. Impact of Roasting Conditions on the Formation of Aroma Compounds in Coffee Beans. *Journal of Food Science*, 67(1), pp.60–66.
- Suarez-Quiroz, M. & Gonzalez-Rios, O., 2004. Study of ochratoxin A-producing strains in coffee processing. *... Journal of Food ...*.
- Tisbury, J., 2013. Your 60 Minute Lean Business 5S Implementation Guide, lulu.com.
- Tisbury, J., 2012. Your 60 Minute Lean Business TPM, lulu.com.
- Toci, A.T. et al., 2009. Effect of the fluid flow speed changes on the chemical composition of coffee samples roasted in an industrial semi-fluidized bed roaster. *... Conference on Coffee*

Equipment required

- One coffee roaster (size 500g 12kg) per 2-3 students. Specification to include:
 - Bean probe installed
 - Exhaust temperature gauge installed
 - Variable burner (gas/electric) integrated into design
 - \circ $\;$ Profiling software is recommended but not necessary
- Natural daylight roasting light with CRI of 96 and K rating of 6500K
- Moisture meter for measuring moisture level in green beans and roasted coffee
- Density meter for green and roasted coffee
- Roast colour measure meter